

Initiation aux réseaux

Couche liaison

WLAN

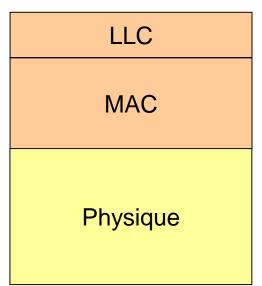
Objectifs

- Pouvoir expliquer la différence entre les termes WLAN, 802.11 et Wi-Fi
- Savoir citer les avantages et les inconvénients des WLAN
- Pouvoir expliquer le lien entre 802.11 et le modèle OSI
- Savoir expliquer les critères pour le choix de canaux
- Pouvoir expliquer le problème d'accès au medium dans le cadre d'un WLAN
- Savoir expliquer les différents problèmes de sécurité posés par les réseaux Wi-Fi
- Pouvoir citer les différents protocoles utilisés pour sécuriser les réseaux Wi-Fi, expliquer leur fonctionnement et leurs faiblesses

Définitions

- WLAN: Wireless Local Area Network (réseau local sans fil)
 - Type de réseau
- 802.11: décrit les caractéristiques d'un WLAN
 - Standard international
- Wi-Fi: Wireless Fidelity, marque créée par la Wi-Fi Alliance
 - Initialement le nom d'une certification pour la compatibilité des équipements
 - Technologie / ensemble de protocoles basé sur les standards 802.11

Avantages et inconvénients


Avantages

- Mobilité
- Facilité et coût d'installation
- Adapté à toutes les plateformes
- Inconvénients
 - Débit faible et partagé
 - Problèmes liés à la transmission radio (interférences, couverture)
 - Sécurité

Lien avec le modèle OSI

- 802.11 définit les couches Physique et Liaison
- La couche liaison est divisée en 2 souscouches:
 - MAC
 - LLC
- But initial de LLC: cacher les différences entre les versions à la couche supérieure
- Concrètement: identifie seulement le protocole de la couche supérieure

Normes principales

Norme	Débit maximal théorique	Bande de fréquences	Commentaire
IEEE 802.11	2 Mb/s	2.4 GHz	Première norme
IEEE 802.11b	11 Mb/s	2.4 GHz	Compatible avec 802.11g. Peu utilisée
IEEE 802.11g	54 Mb/s	2.4 GHz	Très populaire
IEEE 802.11a	54 Mb/s	5 GHz	Portée plus faible, mais moins d'interférences
IEEE 802.11n	600 Mb/s	2.4 GHz ou 5 GHz	Utilise le MIMO (Multiple Input Multiple Output)

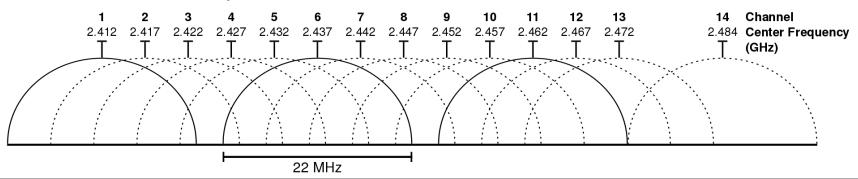
Choix de canal

- Les bandes de fréquences sont divisées en canaux
- Nombre de canaux utilisés :

```
- 802.11b: 1
```

- 802.11g: 1

- 802.11a: 1


- 802.11n: 1 ou 2

 Le choix des bons canaux est important pour éviter de mauvaises performances

Choix de canal: 802.11b/g/n (2.4GHz)

- 13 canaux en Europe + canal 14 seulement au Japon
- Chevauchement des canaux: bruit dans les canaux voisins
- Utilisation du même canal
 - Inconvénient: partage de la bande passante
 - Avantage: permet aux mécanismes de détection de collision de fonctionner
- Idéalement: 5 canaux d'écart pour éviter les interférences
 - Canaux les plus utilisés: 1, 6 et 11

Choix de canal: 802.11a/n (5GHz)

- 19 canaux en Europe
- Pas d'interférences mutuelles
- 802.11n peut utiliser un ou deux canaux
 - 5GHz: rien de spécial
 - 2.4GHz: les deux canaux doivent être séparés de 20 MHz
 - Par exemple 1 et 5 ou 6 et 10
 - Un seul réseau 802.11n à 2.4 GHz bloque 9 des 13 canaux

Accès au medium

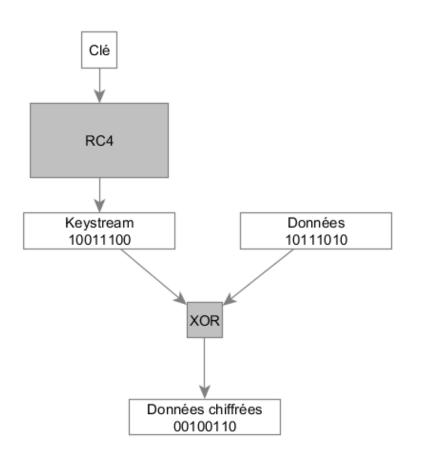
- Pratiquement impossible de transmettre et écouter en même temps
 - Le signal reçu peut être très faible par rapport au signal émis
 - CSMA/CD ne peut pas être utilisé
- Les collisions doivent être évitées plutôt que détectées
- La méthode la plus courante est CSMA/CA (Carrier Sense Multiple Access Collision Avoidance):
 - 1. Ecouter le canal avant de transmettre
 - 2. Si le canal est libre pendant l'intervalle DIFS: transmission
 - 3. Si le canal est occupé: attente d'un délai aléatoire
 - 4. Une fois la trame transmise: attente d'un délai aléatoire
 - 5. Acquittement des trames après chaque transmission (intervalle SIFS entre la réception de la trame et l'acquittement)

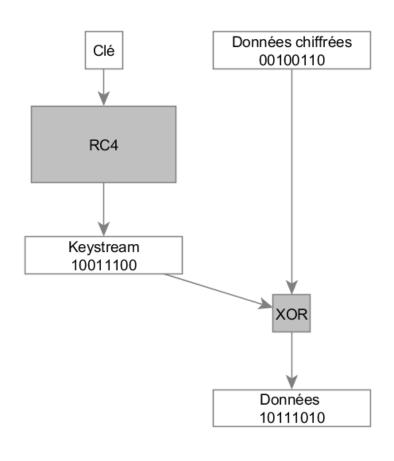
Trames de gestions 802.11

- Trois types de trames: données, contrôle et gestion
- Contrôle: utilisées pour l'accès au medium et les acquittements
- Session: utilisées pour la communication avec l'AP
- Scanning (trouver un réseau):
 - Scanning actif: Probe request et Probe response
 - Scanning passif: Beacon (envoyé régulièrement par l'AP)
- Authentification (prouver son identité):
 - Authentication
- Association (négocier les conditions):
 - Association request
 - Association response

Sécurité Wi-Fi

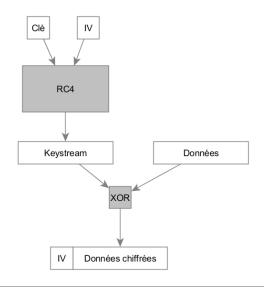
- Aucun chiffrement (p.ex. free hotspot)
 - Équivalent à un hub
- Ecoute passive et analyse du trafic
 - Trafic visible
 - Mode monitor
 - Informations dans les Probe Request
- Problème du déni de service
 - Par définition les réseaux sans fil sont vulnérables aux attaques par déni de service
 - En créant du bruit, on empêche un réseau sans fil de fonctionner
 - La disponibilité ne peut pas être garantie

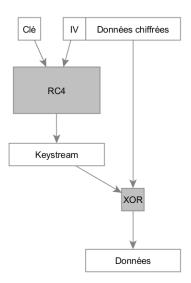



WEP - RC4

- Chiffre les données en utilisant l'algorithme de chiffrement par flot RC4:
 - prend en entrée une clé
 - génère une séquence de bits pseudo-aléatoire aussi longue que les données à chiffrer: le keystream
 - le keystream chiffre les données en effectuant une opération XOR
 - comme l'opération XOR est son propre inverse, les données chiffrées peuvent être déchiffrées en les XORant à nouveau avec le keystream
- La clé utilisée peut être dérivée du mot de passe de plusieurs manières, qui sont propriétaires

WEP - RC4





WEP – RC4 et IV

Problèmes:

- Si un keystream est utilisé plusieurs fois, on peut obtenir des informations sur les données
- Si le keystream est découvert (p.ex. en utilisant un texte clair connu) il permet de déchiffrer des données
- Utilisation d'un vecteur d'initialisation (IV) pour rendre la clé unique
- L'IV est envoyé avec les données pour qu'elles puissent être déchiffrées

WEP - Confidentialité

Faiblesses:

- L'IV n'est pas assez long (24 bits)
 - En une heure environ, tous les IV auront été utilisés
- La norme concernant les IV n'est pas assez stricte:
 - Pas obligatoire
 - Pas forcément aléatoire (incrémentation p.ex.)
- RC4 est vulnérable aux attaques par réutilisation du keystream
- Des outils utilisent ces faiblesses pour retrouver la clé
- Capture du trafic en mode monitor
- Même si on a le mot de passe, le trafic n'est pas déchiffré automatiquement
- Déchiffrement du trafic avec le mot de passe ou la clé

WEP - Authentification

- Il est nécessaire de s'authentifier auprès de l'AP pour que les trames envoyées soient acceptées:
 - 1. Open System
 - 2. Shared Key
 - Dans le cas de l'Open System il s'agit juste d'une requête d'authentification envoyée à l'AP, suivie d'une réponse positive
- Dans le cas du Shared Key, les étapes suivantes ont lieu:
 - 1. Demande d'authentification par la station
 - Envoi d'un texte clair par l'AP
 - 3. Envoi du texte chiffré avec la clé par la station
 - 4. Envoi d'un message de succès par l'AP

WEP - Authentification

- Shared Key semble plus sûr, mais en réalité, il expose un keystream
- Le texte clair et le texte chiffré ont circulé sur le réseau, il suffit de les XORer entre eux pour obtenir un keystream valable:
 - L'AP envoie le texte clair 01110101
 - La station le chiffre en utilisant la clé et renvoie le texte chiffré 10110010, avec l'IV utilisé
 - Un attaquant capture ces deux messages, il effectue l'opération 01110101 XOR 10110010
 - Il sait maintenant que le keystream correspond à cet IV est 11000111

WEP - Integrité

- Le contrôle d'intégrité de WEP, CRC, présente également des faiblesses:
 - Il n'utilise pas de clé
 - Il est linéaire
- Ces propriétés permettent de créer des trames illisibles mais valides sans connaître la clé de chiffrement

WPA - Confidentialité

- WPA ajoute une couche supplémentaire par rapport à WEP, en utilisant l'algorithme TKIP
- TKIP génère la clé utilisée par RC4 pour générer le keystream en se basant sur plusieurs éléments:
 - Passphrase
 - SSID du réseau
 - Eléments échangés pendant l'authentification
- Chaque keystream est unique
- Récupérer la passphrase seule ne permet pas de déchiffrer le trafic
- Pour déchiffrer le trafic, il faut avoir capturé les informations échangées pendant l'authentification

WPA - Confidentialité

- Si l'authentification n'a pas été interceptée, possible d'envoyer une trame de désauthentification, pour forcer la station à se réauthentifier
- Les trames de désauthentification ne sont pas sécurisées et peuvent être envoyées par n'importe qui
- Une attaque par dictionnaire peut être utilisée pour retrouver la passphrase
- Certains outils, comme Wireshark, déchiffrent automatiquement le trafic s'ils détectent des messages d'authentification

WPA – Integrité

- WPA utilise également un nouveau contrôle d'intégrité: MIC
 - Protégé cryptographiquement
 - Utilise une clé dépendant des informations échangées pendant l'authentification
 - Plus robuste que le CRC

WPA2

- Un nouvel algorithme est utilisé pour chiffrer les données:
 AES
 - Contrairement à RC4, c'est un algorithme de chiffrement sûr
- Les clés de chiffrement sont construites à partir d'une passphrase et d'informations échangées pendant l'authentification
- La passphrase est vulnérable aux attaques par dictionnaire
- Comme pour WPA, en retrouvant la passphrase et en capturant les messages d'authentification, on peut déchiffrer le trafic
- L'intégrité est également assurée en utilisant AES, avec la même clé que celle utilisée pour chiffrer les données

WPA2 Enterprise

- Utilise également AES pour chiffrer et vérifier l'intégrité des données
- L'authentification se fait de manière plus complexe, avec une étape supplémentaire lors de l'authentification
- Les messages envoyés lors de l'authentification sont chiffrés, il n'est donc pas possible de les récupérer
- Il n'y a pas de passphrase, donc pas d'attaque par dictionnaire

