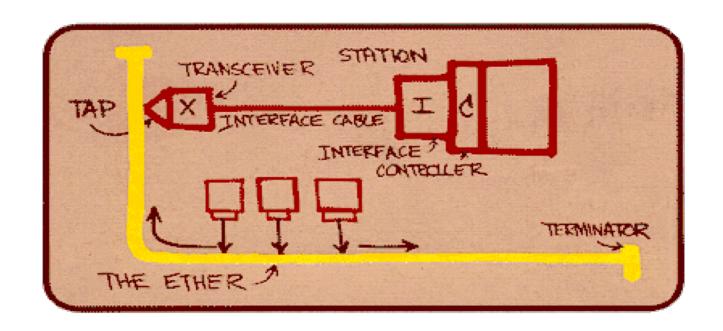
Ethernet

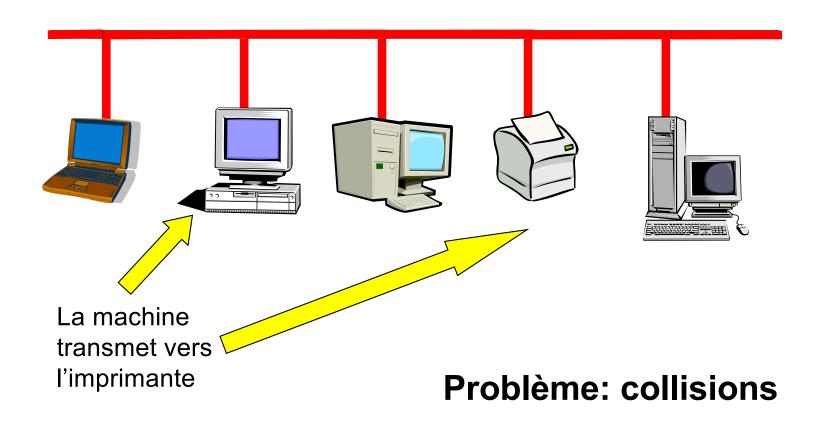
La sous-couche MAC

• MAC

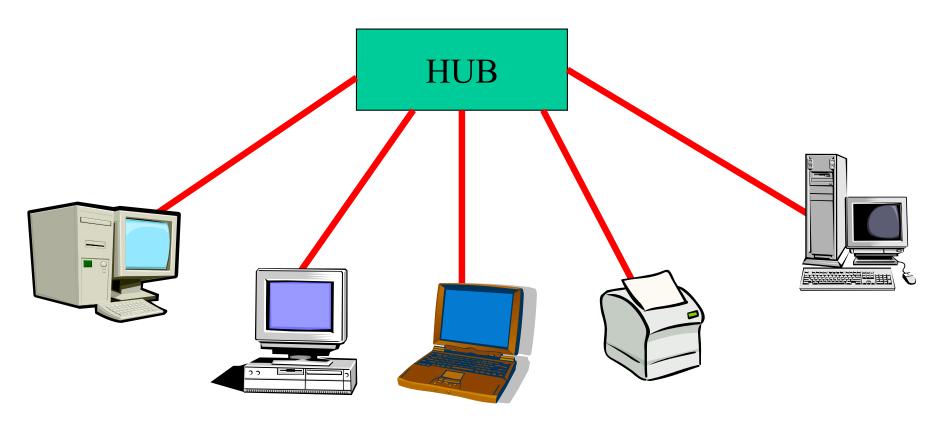

Les objectifs

- Être à même de donner les fonctions de la couche MAC dans Ethernet
- Être à même d'expliquer les deux méthodes d'accès (CSMA/CD or Half-Duplex, et Full Duplex)
- Être à même d'utiliser correctement les termes CSMA/CD, halfduplex, full-duplex
- Connaître la structure et les différences entre les trames
 - DIX, Ethernet II, Raw 802.3, SNAP
- Être à même d'expliquer la significations des champs dans les trames Ethernet II et 802.3
- Être à même d'interpréter correctement la signification des deux bits les LSB de l'octet de plus forte valeur (les bits I/G et L/U, individual/group Local/Uniersal)

MAC dans Ethernet (Medium Access Control)


- Structure le flot de bits de la couche 1 en trames
- Contrôle d'accès au médium physique
 - CSMA/CD (half duplex)
 - Full Duplex
- Utilise LLC 1 (sans connexion, sans acquittement)

Ethernet de Metcalfe

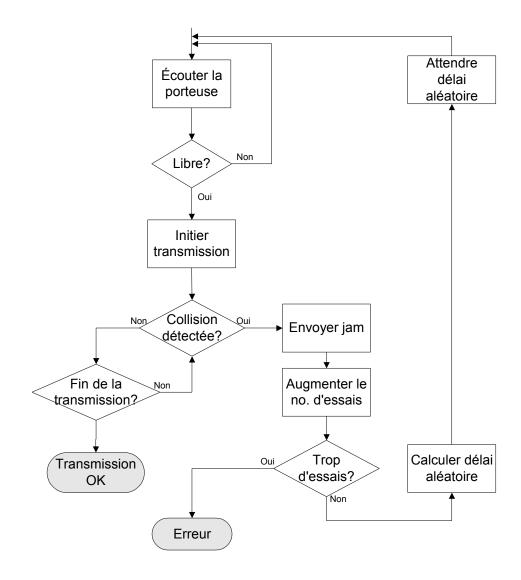


Connexion de toutes les stations à un même câble

Topologie en bus

Topologie en Etoile « Hubée »

Problème: collisions

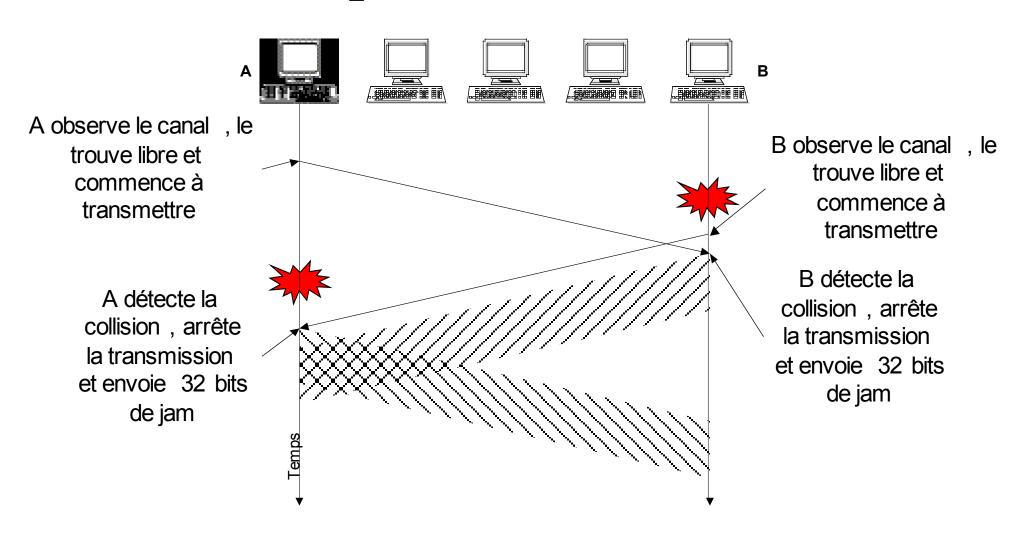

La méthode d'accès

- Les méthodes d'accès que nous avons vu dans ce cours jusqu'à maintenant subissent les collisions de manière passive (p.e. CSMA/CA)
- On obtient une amélioration substantielle des performances si l'on arrête la transmission dès qu'une collision se produit
- Ceci implique que la station doit pouvoir détecter les collisions
- CSMA/CD (Carrier Sense Multiple Access/Collition Detection)

L'algorithme CSMA/CD

- Écouter le canal
- Si un signal est présent (une autre station transmet), continuer à écouter
- Si le canal est libre, envoyer la trame et regarder pendant la transmission s'il y a une collision
- S'il n'y a pas de collision, considérer que la trame a été livrée
- Dans le cas d'une collision, arrêter la transmission de la trame et envoyer un signal de jam de 32 bits
- Attendre un temps aléatoire selon l'algorithme TBEB avant de transmettre la trame une nouvelle fois

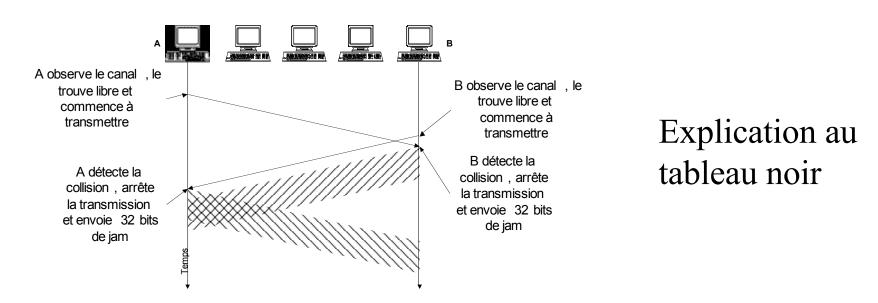
Algorithme CSMA/CD


On utilise aussi le terme

Half-Duplex pour décrire le mode

CSMA/CD dans les réseaux

Ethernet


Exemple d'une collision

L'utilisation de la méthode CSMA/CD détermine la relation entre le diamètre maximum des réseaux 802.3 et la taille minimum des trames

Paramètres d'IEEE 802.3

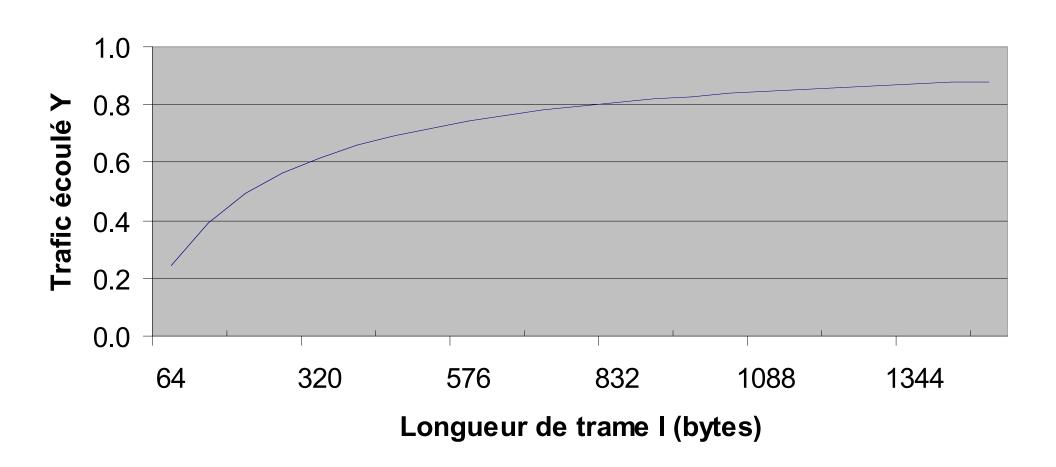
- Pour que chaque station détecte correctement ses collisions :
 - Temps de propagation aller-retour maximal: 512 bits (51.2 μs 10 Mbps, 5.12 μs à 100 Mbps)
 - Taille minimum d'une trame : 512 bits

Gestion de collisions

- Dès qu'une collision est détectée, arrêter la transmission de la trame et envoyer le signal de jam de 32 bits
- Le but est que l'autre station responsable de la collision sache ce qui s'est passé
- Ensuite attendre un back-off aléatoire en utilisant le Truncated Binary Exponential Backoff (TBEB)

Truncated Binary Exponential Back-off (TBEB)

- 1. Temps aléatoire est un nombre de slots N*S
- 2. Un slot est égale à 512 bits
- 3. Le nombre de slots N est choisi entre 0 et 2ⁱ 1 i est le nombre de collisions consécutives ou


Aprél la première collision, i=1 et N est choisi parmi les valeurs 0,1

Après la deuxième collision, i=2 et N est choisi parmi les valeurs 0,1,2,3

Quels sont les valeurs possibles après la cinquième collision ?

- 4. Après 10 collisions, i n'augmente plus
- 5. A la 16ème collision, on abandonne la transmission

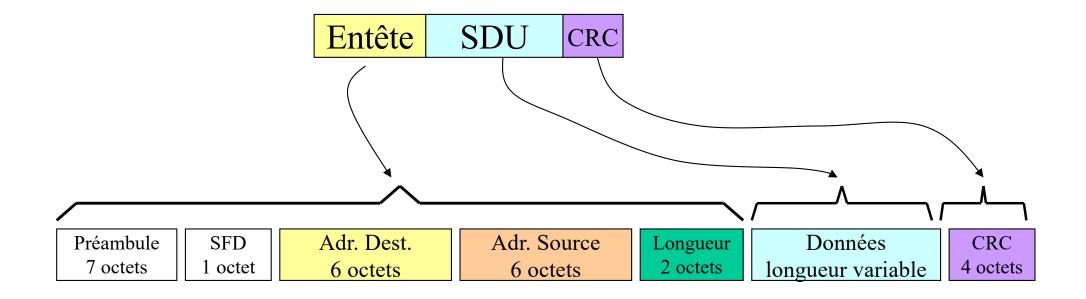
Performances de CSMA/CD

Deuxième méthode s'accès : full-duplex

- Un grand nombre de cartes Ethernet peuvent travailler en mode full-duplex
 - Transmissions simultanées dans les deux sens sur un lien point à point
 - Pas de collisions
 - Pas de retransmission
 - Pas de CSMA/CD!

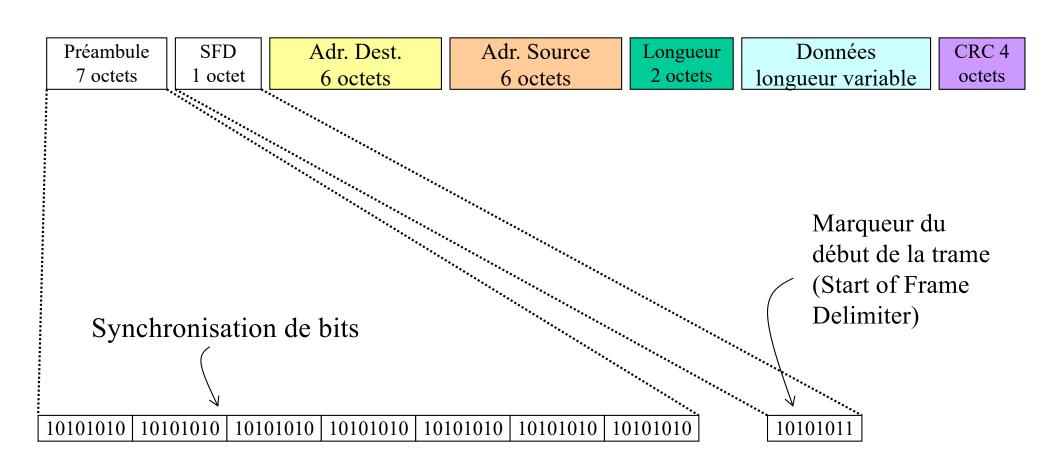
Avantages du full-duplex

- Double la bande passante d'un lien point à point
- Pas d'attente avant d'émettre
- La limitation de la longueur d'un segment due à CSMA/CD tombe
 - Délai aller-retour n'est plus important
 - L'atténuation limite la taille d'un segment mais elle peut être compensée à l'aide de répéteurs

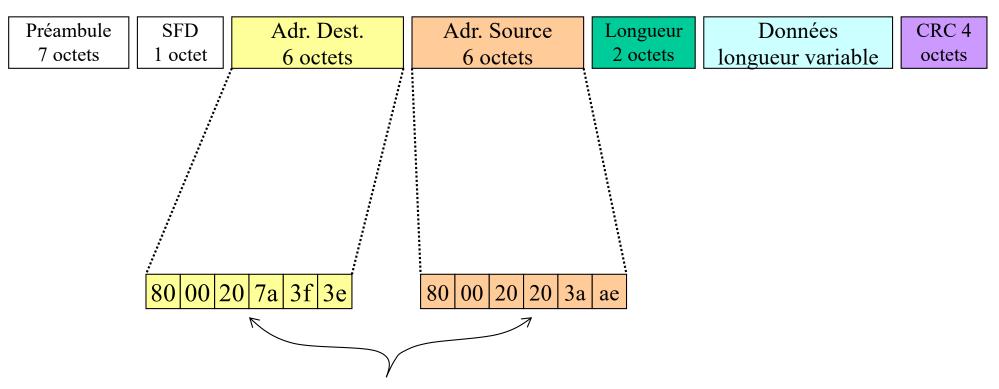

Régulation de flux en mode full duplex

- En full duplex, les trames peuvent être envoyées à une grande cadence
- Si une station n'arrivent pas à suivre lo flot de trames d'une autre, elle peut envoyer une trame spéciale appelé PAUSE
- Elle contient un temps mesuré en unités de 512 bits pendant lequel la station ne désire recevoir aucune trame
- La stations peut utiliser un temps égale à zéro si elle est prête à recevoir des trames à nouveau

Le format de la trame MAC


- Il y a deux types de trames MAC:
 - -802.3
 - Ethernet II (ou DIX)
- Elles sont essentiellement identiques
- On peut ajouter d'autres types de trames si l'on considère aussi les différentes entêtes LLC (trame SNAP, trame « Raw 802.3 »)

Format de la trame 802.3


Trame 802.3

Préambule et SFD (Start of Frame Delimiter)

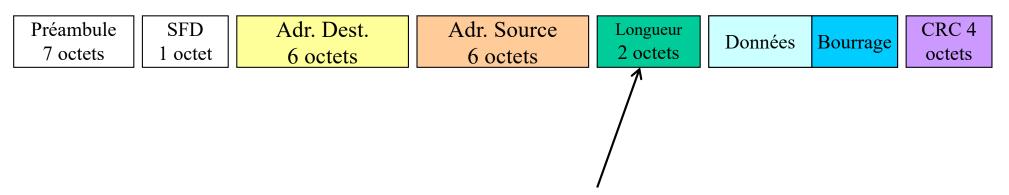
Trame 802.3

Adresses Source et Destination

Adresses MAC ou physiques

Adresses MAC

- Adresse physique d'une carte réseau
 - Unique : Toutes les cartes de réseaux ont une adresse différente
 - Fixe: configurée dans la mémoire ROM de la carte
- Longueur: 48 bits $(2^{48} = 281.474.976.710.656 \text{ adresses})$
 - 3 premiers octets : Identification du constructeur (définie par l'IEEE)
 - 00-00-0C-xx-xx-xx: Cisco
 - 08-00-20-xx-xx-xx: Sun
 - 08-00-09-xx-xx-xx: HP
 - 3 derniers octets : Identification de la carte (gérée par le constructeur)
 - Bit le moins significatif du premier octet: Indique une adresse de groupe
 - Deuxième bit le moins significatif du premier octet indique si l'adresse est gérée localement ou globalement


Adresses de groupe

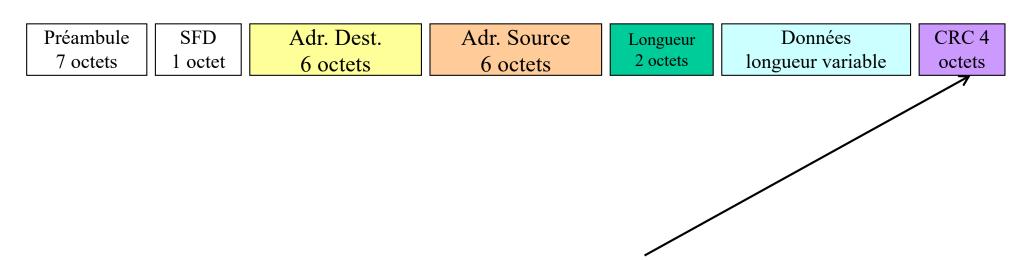
- Broadcast (diffusion)
 - Adresse FF-FF-FF-FF-FF
 - Les cartes réseau écoutent cette adresse et les stations doivent traiter les trames reçues
 - Commutateurs et ponts : transmettent une trame reçue sur tous les ports
 - Applications
 - ARP: conversion adresses IP --> MAC)

Multicast

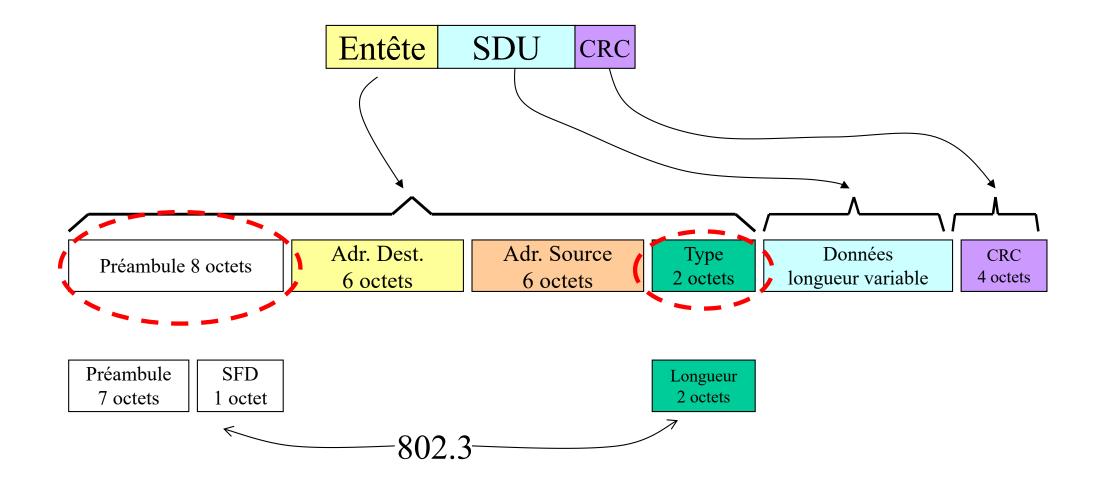
- 1^{er} bit transmis de l'adresse vaut 1
 (1^{er} octet de l'adresse est impair)
 - Exemple : 09-00-2B-00-00-0E
- Une station doit configurer la carte réseau pour écouter une adresse multicast
- Applications:
 - Configuration automatique de l'acheminement dans un LAN (Spanning Tree Protocol)
 - Tous les ponts font partie d'un groupe multicast

Trame 802.3 Longueur

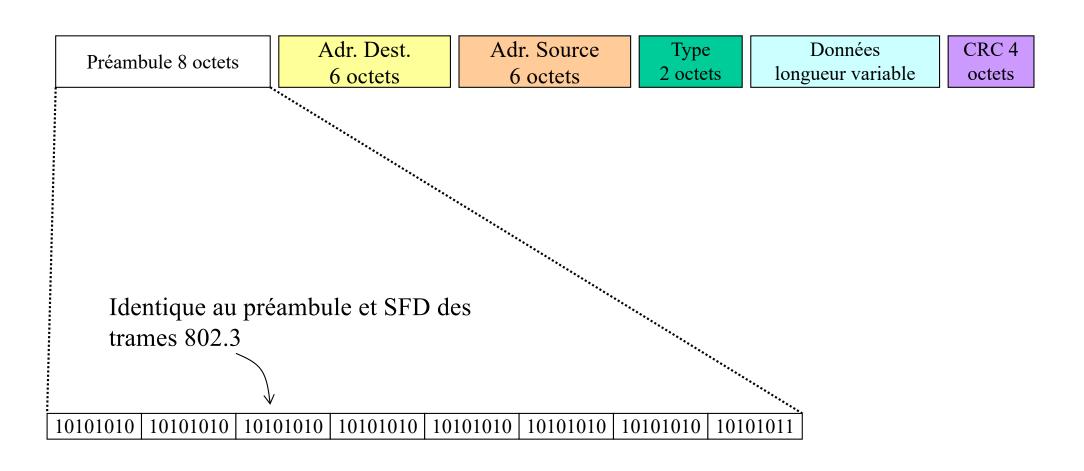
- -Contient le nombre d'octets reçus de la sous-couche LLC
- -Si cette longueur est plus petite que le minimum de 46, des octets de bourrage sont ajoutés par MAC


-Longueur ≤ 1500

Trame 802.3 Données

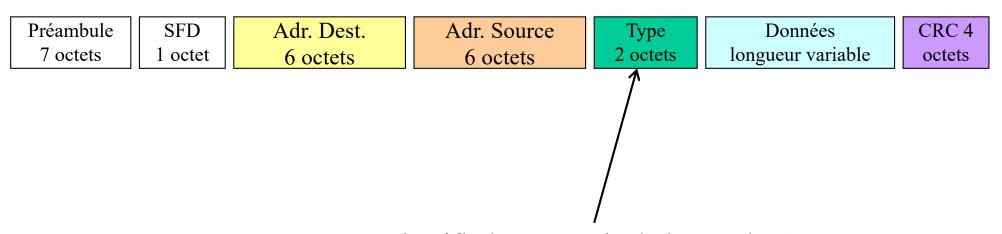

Trame 802.3

Cyclic Redundancy Check (CRC)



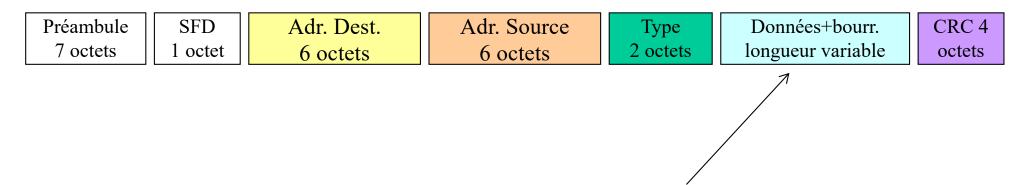
- -Codage pour la détection d'erreurs
- -Les trames erronées sont écartées

Format de la trame Ethernet II



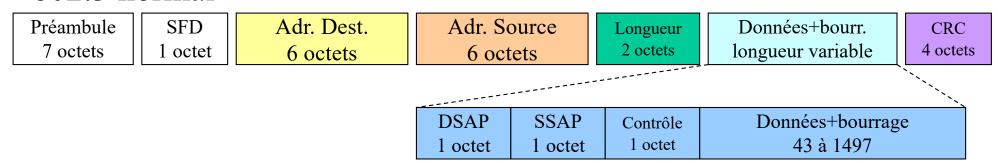
Trame Ethernet II Préambule

Trame Ethernet II


Type

- -Identifie le protocole de la couche 3
- -Toujours plus grand que 1536
- -Le protocole de la couche 3 est responsable d'ajouter l'information sur la longueur

Trame Ethernet II


Données

Données et octets de bourrage ajoutés par MAC pour atteindre le nombre minimum de 46 octets

Trames spéciales: SNAP

802.3 normal

SNAP (Sub-Network Access Protocole)

Préambu 7 octets			Adr. Dest. 6 octets	Adr. Source 6 octets	Longueur 2 octets	Données+bourr. longueur variable	CRC 4 octets
DSAP SSA 1 octet 1 oct			Contrôle 1 octet	Organization Code 3 octet	Ethernet type 2 octet	Données+bourrage 38 à 1492	

Préambule 7 octets

SFD 1 octet Adr. Dest. 6 octets

Adr. Source 6 octets

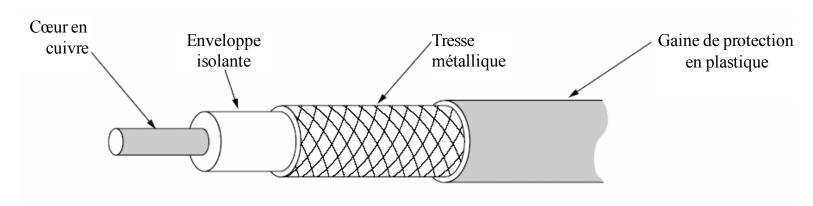
Type 2 octets

Données+bourr. longueur variable CRC 4 octets

Préambule 7 octets

SFD 1 octet Adr. Dest. 6 octets

Adr. Source 6 octets


Longueur 2 octets

Données+bourr. longueur variable

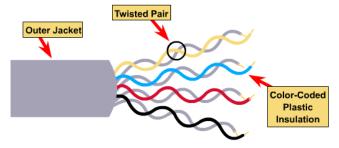
CRC 4 octets

Câble coaxial

- Très bonne protection électromagnétique
- Utilisé principalement dans les réseaux de télédiffusion
 - Premières réseaux LAN sur câble coaxiaux
- Largeur de bande: p.ex. 800 MHz sur plusieurs km

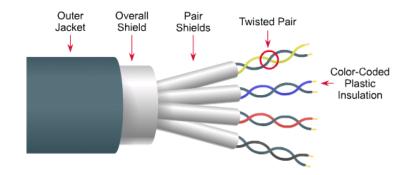
Connecteurs

Type BNC


Câbles à paires torsadées

- Paire torsadée:
 - deux conducteurs en cuivre, isolés l'un de l'autre,
 - enroulés de façon hélicoïdale
 - Avantage: meilleure protection électromagnétique
- Câble à paires torsadées:
 - Comprend plusieurs paires torsadées
 - Avec écran ou non

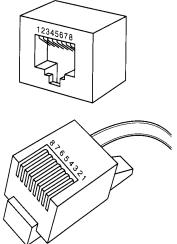
Types de câbles torsadés


UTP (Unshielded Twisted Pair)

- Comprend 4 paires torsadées non écrantées
- Longueur jusqu'à 100 m
- Avantages: moins cher et plus flexible
- Différentes catégories:
 - Cat. 3: jusqu'à 10 Mb/s
 - Cat. 5: jusqu'à 100 Mb/s
 - Cat. 5e, 6: Gigabit-Ethernet

STP (Shielded Twisted Pair)

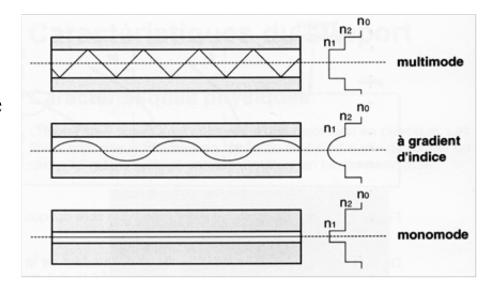
- Paires individuelles et câble complet sont écrantées
- Longueur jusqu'à 100 m
- Attenuation plus faible
- Inconvénient: cher et difficile à installer (mise à terre)



Connecteur RJ-45

- Raccordement normalisé pour 10Base-T
 - Seulement deux paires (émission et réception)
 du câble sont utilisées

Broche	Signal
1	Transmission +
2	Transmission –
3	Réception +
4	Non utilisé en 10Base-T
5	Non utilisé en 10Base-T
6	Réception –
7	Non utilisé en 10Base-T
8	Non utilisé en 10Base-T


Types de fibres optiques

Fibre multimode

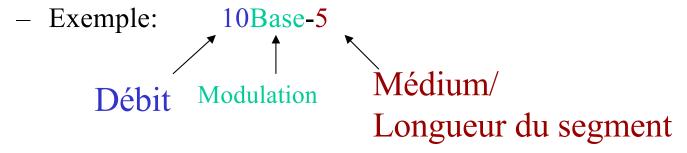
- Diamètre épais (62,5 ou 50 μm)
- Le signal se propage avec plusieurs 'angles' (modes) différents
- L'interférence entre les modes limite la distance de transmission (dispersion modale)

Fibre monomode

- Diamètre plus petit (10 μm)
- Un seul mode est possible
- Très bonnes caractéristiques de transmission
- Plus chère

Connecteurs optiques

Connecteur duplex SC


Connecteur MIC

Connecteur ST

Types de réseau Ethernet

- La norme 802.3 définit toute une famille de technologies basées sur CSMA/CD
- Premiers réseaux Ethernet:
 - 10 Mb/s sur un câble coaxial comme médium partagé
- Évolution de la norme:
 - Technologies plus performantes (100 Mb/s, 1 Gb/s, ...)
- Noms des technologies

10Base-5

- Topologie en bus
- Utilise câble coaxial jaune
- Prises vampire

Segment 10Base-5

- Segment: câble partagé auquel les stations sont connectées
 - Câble coaxial
 - Diamètre: 1 cm
 - Impédance caractéristique: 50 ohms
 - Terminaisons de 50 ohms des deux bouts, dont une mise à terre
 - Coefficient de vélocité : 0,77
 - Longueur maximale d'un segment : 500 m
 - Distance des stations: multiples de 2,5 m
 - Nombre maximal de stations par segment : 100 stations

Utilisation de 10Base-5

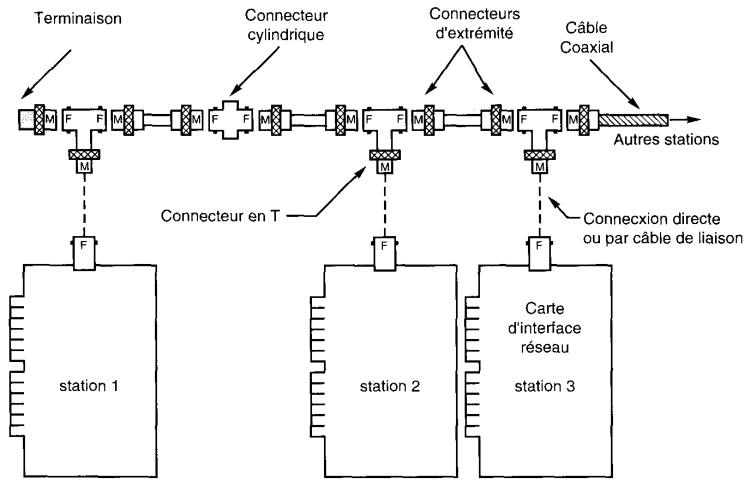
- Inconvénients majeurs
 - Rigidité, diamètre et coût du câble
- Pratiquement plus utilisé
- Emploi est réservé aux sites
 - nécessitant un segment long ou
 - une bonne protection contre les interférences électromagnétiques

10Base-2

- Aussi appelé Thinnet ou Cheapernet
- Utilise un câble coaxial moins encombrant et plus souple (RG-58)

Débit de transmission:
 10 Mb/s

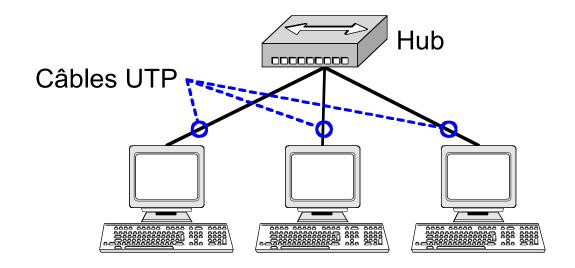
– Diamètre du câble: 0,48 cm


Impédance caractéristique: 50 ohms

Coefficient de vélocité: 0,65

- Longueur maximale d'un segment: 185 m

Nombre maximal de stations par segment: 30


Éléments d'un réseau 10Base-2

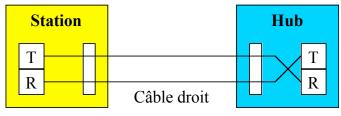
20/11/2010

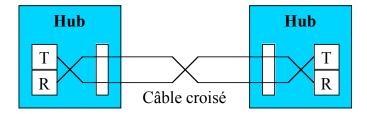
10Base-T

- Configuration en étoile
 - Problème des réseaux en bus: localisation de ruptures, ...
 - Nœud central: hub
 - Câbles à paires torsadées
 - Possibilité d'utiliser le câblage existant dans les bâtiments
- Une des configuration les plus répandues actuellement

Câbles 10Base-T

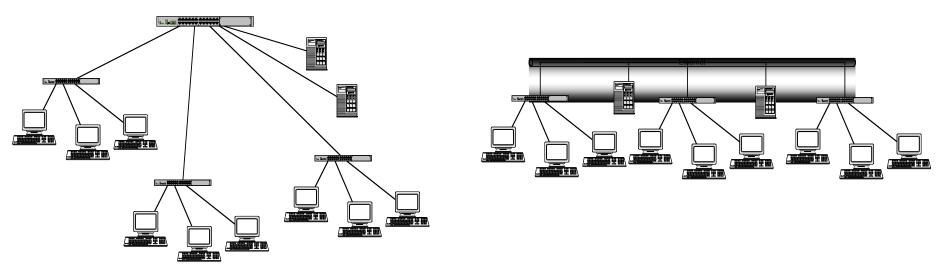
• Spécifications

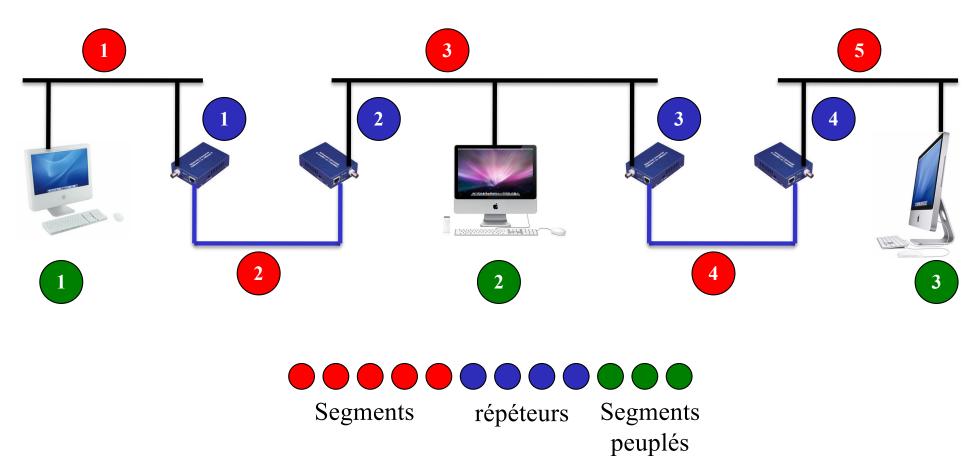

Paramètre	
Média physique	Câble à paires torsadées
Impédance caractéristique	100 ohms
Coefficient de vélocité	0,585
Débit de transmission	10 Mb/s
Longueur maximale d'un segment	100 m
Nombre de stations par segment	2


• La norme n'exige pas un type de câble précis mais permet l'utilisation de différents types

Croisement

- La paire d'émission de la source doit être la paire de réception du destinataire
 - Croisement des paires nécessaire
- Les hubs effectuent souvent un croisement interne au niveau des ports
- Pour la connexion direct hub-hub, PC-PC: câble


croisé



Interconnexion de hubs (10Base-T)

- Pour augmenter le nombre de ports
- Pour relier des stations distantes
- Même règle que dans 10Base-5 et 10Base-2:
 - Au maximum 4 répéteurs/hubs entre deux stations
 - Distance maximale avec des segments 10Base-T: 500 m
 - Pour couvrir des distances plus grandes:
 Segment 10Base-5 comme épine dorsale

La regle 5-4-3 S'applique aux systèmes 10 Mbps

20/11/2018

FastEthernet

- Débit de transmission: 100 Mb/s
- Couche MAC similaire à Ethernet à 10 Mb/s
 - Même format de trame
 - CSMA/CD comme méthode d'accès
 - Seule modification: réduction de la durée de transmission d'un bit
 - Conséquences:

Paramètre	
Délai aller-retour maximal	512 temps bit (= $5.12 \mu_{\rm S}$)
Longueur du signal jam	32 bits
Interframe gap	$0,96 \mu_{\mathrm{S}}$
Taille minimale d'une trame	64 octets

- > Diamètre maximum d'un domaine de collision: 200 m (10Base-5> 2km)
- Bonne compatibilité
 - au niveau logiciel des stations
 - et matériel (p.ex. hubs avec ports 10 Mb/s et 100 Mb/s)

Normes FastEthernet

100Base-TX (1995)

Utilise deux paires torsadées d'un câble UTP cat. 5

100Base-FX

Requiert deux fibres optiques multimode

100Base-T4 (1995)

- Requiert quatre paires d'un câble UTP cat. 3, 4 ou 5
- Ne permet pas la transmission full-duplex

100Base-T2 (1997)

- Utilise deux paires torsadées d'un câble UTP cat. 3
- Pas de support de câbles coaxiaux
- Seulement 100Base-TX et 100Base-FX sont utilisées

100Base-TX et 100Base-FX

- 100Base-TX
 - Similaire aux réseaux 10Base-T
 - Câblage en étoile (UTP cat. 5!) avec un hub/switch comme nœud central
 - Longueur maximale d'un segment: 100 m
- 100Base-FX
 - Utilise un câble à deux fibres optiques multimodes
 - Le croisement est effectué au niveau du câble
 - Longueur maximale d'un segment: 400 m
 - Connecteurs:

Connecteur duplex SC Connecteur MIC Connecteur ST

Interconnexion de segments FastEthernet

- Répéteur/hub FastEthernet :
 - Peut interconnecter des segments 100Base-TX avec 100Base-FX
 - Au maximum deux répéteurs dans un chemin

Configurations maximales

Configuration	100Base -TX	100Base -FX
Longueur maximale d'un segment	100 m	412 m
Réseaux avec un répéteur	200 m	320 m
Réseaux avec deux répéteurs	205 m	228 m

⁵ m de paire torsadée pour relier les deux répéteurs 1

Gigabit-Ethernet

Sur cuivre

Sur fibre optique

1000Base-T (802.3ab)

- Dernière norme Gigabit
- Utilise 4 paires UTP 5e
- Longueur max. d'un segment: 100 m

1000Base-CX

- Sur câble STP spécial
- Principalement pour le 'patching' entre deux switches dans une armoire
- Longueur max d'un segment: 25 m

<u>1000Base-LX</u> (λ =1300 nm)

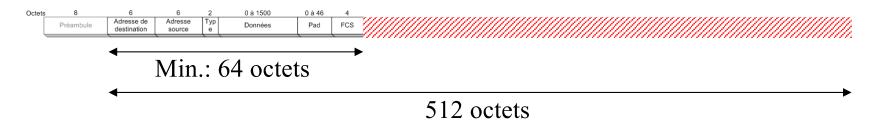
- Sur une paire de fibres (multimode ou monomode)
- Longueur max d'un segment :
 - Half Duplex: 316 m
 - FD sur fibre multimode: 550 m
 - FD sur fibre monomode: 5000 m

1000Base-SX (λ =850 nm)

- Sur une paire de fibres multimodes
 - Moins cher que 1000Base-LX
- Longueur max d'un segment :
 - Half Duplex: 316 m
 - FD, fibre multimode, 62,5µm: 275 m
 - FD, fibre multimode, 50µm: 500 m

CSMA/CD dans Gigabit-Ethernet

- La norme exige qu'un commutateur Gigabit-Ethernet soit capable de travailler en half-duplex
 - ➤ Utilisation de CSMA/CD
- Problème en half-duplex :

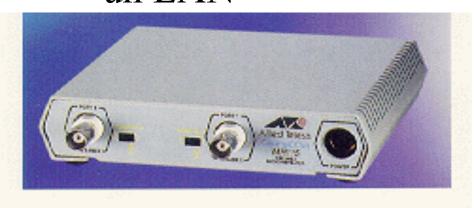

Débit	10 Mb/s	100 Mb/s	1000 Mb/s
Délai aller retour max.	51,2 μs	5,12 μs	512 ns
Étendue max.	2800 m	200 m	20 m?

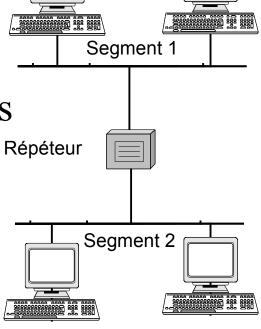
• Solutions:

- Ne pas utiliser CSMA/CD (half-duplex)
- Agrandir la trame avec du padding plus long
- ➤ Prolonger la durée de transmission d'une trame courte

Carrier extension (Half Duplex)

• Ajout d'octets de bourrage à la fin d'une trame courte

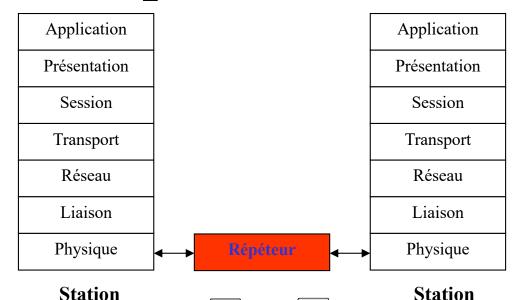

- \triangleright Durée de transmission minimum d'une trame $\approx 4 \mu s$ (512 octets)
- Etendue maximale du réseau similaire à FastEthernet
- Exemple du débit de transmission en half duplex:
 - Charge utile de la trame : 60 octets (Voix sur IP)
 - FastEthernet: 100 Mb/s * 60 octets / 86 octets = 69 Mb/s
 - Gigabit-Ethernet: 1 Gb/s * 60 octets / 520 octets = 117 Mb/s


Répéteurs

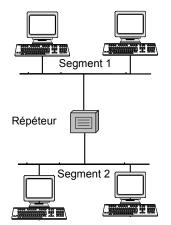
• Interconnectent plusieurs segments pour :

 couvrir des distances plus longues que 500 m

 connecter plus de 100 stations dans un LAN



Fonctions d'un répéteur


Travaille au niveau de la couche 1

- Transmet bit par bit sans décoder les trames
- Régénère le signal
 - Transmission sur une distance plus élevée

Gestion de collisions

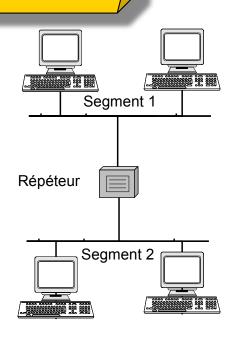
- 1. Collisions causées par d'autres éléments du réseau:
 - Propage la collision reçue vers les autres segments
- 2. Collisions causées par le répéteur
 - Arrête la transmission et envoie le signal jam
 - Ne ré-émet pas la trame

Hubs

- Réseaux 10Base-T:
 - câblage en étoile
 - mais une topologie logique en bus
 - Hub: bus logique
- Hub = répéteur multi-port
 - Travaille au niveau de la couche physique (niveau des bits)
 - Reçoit et régénère les signaux reçus sur chaque port

Fonctions avancées

Auto-partition:


- Permet d'isoler des segments défectueux
 - Arrêt de toute transmission d'un segment en faute vers les autre ports
 - Trafic des autres ports continu à être envoyé sur le segment défectueux
- Segment est considéré défectueux
 - Après 30 collisions consécutives
 - Lors d'une collision permanente
- Cause classique d'un segment défectueux:
 - Oubli de la terminaison de 50 ohms lors de l'installation d'un segment coaxial

Domaine de collision

Domaine de collision :

Ensemble des stations et systèmes intermédiaires d'un LAN dont les transmissions peuvent entrer en collision

- Exemples
 - Un seul segment 10Base-5
 - Plusieurs segments interconnectés par un répéteur
- ➤ Un répéteur élargit le domaine de collision

Interconnexion de réseaux locaux

- A l'aide de ponts et de commutateurs
 - Évitent les problèmes de l'interconnexion par des hubs

Pont/bridge:

- Souvent réalisé en logiciel
- Peu de ports (normalement 2)
- Lent

Commutateur/switch:

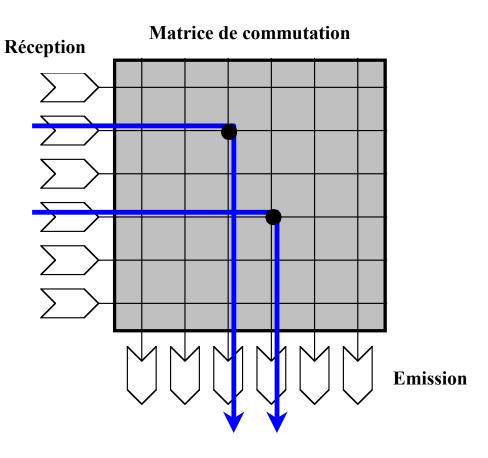
- Réalisé en hardware
- Beaucoup de ports

Switch transparents

<u>Transparence</u>

- Le switch doit fonctionner sans aucune configuration ou modification du réseau
 - 1. Apprentissage dynamique de la table de filtrage

Adresse MAC	Port de sortie
00-00-0C-E1-F2-03	2
06-20-EE-02-3A-02	1
03-03-35-AC-54-01	1


- 1. Résolution automatique de boucles dans la topologie
 - 1. Protocole de l'« arbre recouvrant »

Acheminement et filtrage des trames

- Hub:
 - Une trame reçue est diffusée sur tous les ports
- Switch
 - Apprentissage des stations atteignables sur chaque port
 - *Filtering Database*: Adresse MAC destinataire → Port de sortie
 - Une entrée apprise est valable pendant 5 min (par défaut)
 - Destinataire inconnu: diffusion sur tous les ports
- > Diminue la charge du réseau
- > Augmente la sécurité
- ➤ Mais les trames de broadcast se propagent à travers le LAN entier
 - ➤ Un seul <u>domaine de broadcast</u>

Commutation

- Port:
 - composé d'un récepteur et d'un émetteur
 - Connecté à une matrice de commutation
- Les ports sont indépendants l'un de l'autre
 - Plusieurs trames peuvent être commutées simultanément
 - Pas de collisions entre les trames de différents ports
- Chaque port représente un domaine de collision

Techniques de commutation: Store and forward

- Technique
 - 1. Réception de la trame complète
 - 2. Analyse et contrôle d'erreurs
 - 3. Commutation vers le port de sortie
- Avantages
 - Adapté aux configurations asymétriques (10/100 Mb/s)
 - Trames incorrectes sont filtrées
- Inconvénients
 - Temps de latence élevé
 - Nécessite une mémoire tampon de grande taille

Techniques de commutation: Cut-through switching

• Technique

- 1. Le commutateur attend les premiers octets de l'en-tête
- 2. Décodage de l'adresse du destinataire
- 3. Réception et transmission de la trame en même temps

Avantages

- Temps de latence très court et constant
- Mémoire tampon faible

• Inconvénients

- Contrôle d'erreurs n'est pas possible
- Ne permet pas de conversion de la vitesse

Techniques de commutation: Adaptive error free

- Combine store and forward avec cutthrough
 - Le commutateur travaille en mode cut-through
 - Le contrôle d'erreurs est effectué pour chaque trame
 - Ne permet pas de filtrer des trames incorrectes
 - Le commutateur change en mode store and forward après plusieurs erreurs consécutives

Inconvénients d'Ethernet commuté

Gestion d'adresses

- Nécessaire pour le filtrage de trames
- Nécessite un quantité non-négligeable de mémoire
- Peut ralentir la commutation de trames
- Un réseau important doit être sous-divisé en réseaux logiques: VLAN
- Contrôle de flux nécessaire
 - Congestion d'un switch possible (contrairement à un hub)
 - Configuration asymétrique: 100 Mb/s --> 10 Mb/s
 - Concentration du trafic sur un port de sortie

Autonégociation

- La fonction d'autonégociation permet aux cartes réseau de communiquer à la vitesse la plus élevée possible et sélectionner le mode full duplex si celui-ci est supporté par les deux cartes
- Si une carte 10BASE-T est connectée à une carte 100BASE-TX, par exemple, la communication doit s'établir à 10 Mbps full-duplex (si supporté par les deux cartes)
- Utilise des séquences d'impulsions de test de lien (link test pulse)
- Rafales de 33 impulsions qui code les modes implémentés
- Une carte non-compatible les interprète comme test de lien

Autonégociation

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
S0	S1	S2	S3	S4	A0	A1	A2	A3	A4	A5	A6	A7	RF	Ack	NP
	0	-													

A0 (D5) 10BASE-T X	
A1 (D6) 10BASE-T full-duplex 🗡	
A2 (D7) 100BASE-TX X	
A3 (D8) 100BASE-T full-duplex 🗸	
A4 (D9) 100BASE-T4 X	
A5 (D10) PAUSE operation for flow control	
A6 (D11) Reservé	
A7 (D12) Reservé	

